A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces
نویسندگان
چکیده
Brain-Machine Interfaces (BMIs) can be used to restore function in people living with paralysis. Current BMIs require extensive calibration that increase the set-up times and external inputs for decoder training that may be difficult to produce in paralyzed individuals. Both these factors have presented challenges in transitioning the technology from research environments to activities of daily living (ADL). For BMIs to be seamlessly used in ADL, these issues should be handled with minimal external input thus reducing the need for a technician/caregiver to calibrate the system. Reinforcement Learning (RL) based BMIs are a good tool to be used when there is no external training signal and can provide an adaptive modality to train BMI decoders. However, RL based BMIs are sensitive to the feedback provided to adapt the BMI. In actor-critic BMIs, this feedback is provided by the critic and the overall system performance is limited by the critic accuracy. In this work, we developed an adaptive BMI that could handle inaccuracies in the critic feedback in an effort to produce more accurate RL based BMIs. We developed a confidence measure, which indicated how appropriate the feedback is for updating the decoding parameters of the actor. The results show that with the new update formulation, the critic accuracy is no longer a limiting factor for the overall performance. We tested and validated the system onthree different data sets: synthetic data generated by an Izhikevich neural spiking model, synthetic data with a Gaussian noise distribution, and data collected from a non-human primate engaged in a reaching task. All results indicated that the system with the critic confidence built in always outperformed the system without the critic confidence. Results of this study suggest the potential application of the technique in developing an autonomous BMI that does not need an external signal for training or extensive calibration.
منابع مشابه
Simultaneous Control and Human Feedback in the Training of a Robotic Agent with Actor-Critic Reinforcement Learning
This paper contributes a preliminary report on the advantages and disadvantages of incorporating simultaneous human control and feedback signals in the training of a reinforcement learning robotic agent. While robotic human-machine interfaces have become increasingly complex in both form and function, control remains challenging for users. This has resulted in an increasing gap between user con...
متن کاملReinforcement Learning for Learning Rate Control
Stochastic gradient descent (SGD), which updates the model parameters by adding a local gradient times a learning rate at each step, is widely used in model training of machine learning algorithms such as neural networks. It is observed that the models trained by SGD are sensitive to learning rates and good learning rates are problem specific. We propose an algorithm to automatically learn lear...
متن کاملLearning to Play Donkey Kong Using Neural Networks and Reinforcement Learning
Neural networks and reinforcement learning have successfully been applied to various games, such as Ms. Pacman and Go. We combine multilayer perceptrons and a class of reinforcement learning algorithms known as actor-critic to learn to play the arcade classic Donkey Kong. Two neural networks are used in this study: the actor and the critic. The actor learns to select the best action given the g...
متن کاملAn Actor-critic Algorithm for Learning Rate Learning
Stochastic gradient descent (SGD), which updates the model parameters by adding a local gradient times a learning rate at each step, is widely used in model training of machine learning algorithms such as neural networks. It is observed that the models trained by SGD are sensitive to learning rates and good learning rates are problem specific. To avoid manually searching of learning rates, whic...
متن کاملA Convergent Online Single Time Scale Actor Critic Algorithm
Actor-Critic based approaches were among the first to address reinforcement learning in a general setting. Recently, these algorithms have gained renewed interest due to their generality, good convergence properties, and possible biological relevance. In this paper, we introduce an online temporal difference based actor-critic algorithm which is proved to converge to a neighborhood of a local m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014